Ask |
The gain margin of system under loop unity negative feedback G(s)H(s) = ${100 \over s(s+10)^2}$
(a)0 dB
(b)20 dB
(c)26 dB
(d)46 dB
Answer is ( c ) 26 dB
Concept
Gain Margin under closed loop unity negative feedback is =$G(s)H(s) = {100 \over s(s+10)^2} ... Eq(1)$Phase $\phi = -90° - 2arctan(ω/10)$Phase cross - over frequency = -180°$-180° = -90° - 2arctan(ω/10)$$90° = 2arctan(ω/10)$$tan(45°) = ω/10 \therefore ω = 10$In Eq(1) , put s = jω$\therefore G(jω)H(jω) = 100/jω(jω+2)^{2}$$|G(jω)H(jω)| = {100\over ω(ω2 + 100)}$...Eq(2)Substituting for ω = 10,Eq (2) becomes, ${100\over 10(100+100)} = 1/20 $Gain Margin = $1 \over |G(jω)H(jω)|$ = 1/(1/20) = 20In dB, G.M (in dB) = 20 log1020 = 26dB
No comments:
Post a Comment